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Abstract

This report marks the end of a one year of an anticipated three year effort involv-

ing undergraduate and graduate students in the study of methods for numerically

identifying objects according to shape in two dimensions. The method is based upon

comparing the unit gradient of an observed object and the unit gradient of a stan-

dard object over a specified range of points. The manner in which the gradients are

compared forms the basis of a shape recognition scheme, which is then applied to

simple closed plane figures. The gradient based method is calibrated by using various

distorted objects in comparison with a set of standard reference objects. The use of

pattern recognition techniques for computer identification of two-dimensional figures

was to be investigated during the second and third years of this project.
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Chapter 1

INTRODUCTION

M.#

The following items were proposed and accomplished during the first year of this

grant:

1. Problem Study Phase;

2. Initial Shape Metric Formulation;

3. Two Dimensional Shape Identification Group Events, and

4. Formulation of a Two-Dimensional Object Identification System.

In the Problem Study Phase, the definition of shape was refined. The refined definition

lead to a mathematical definition of shape. From the mathematical definition of shape

an initial shape metric was developed. The concepts behind the initial shape metric

was l_resented to several groups in academia and in industry. The scientific interaction

with coIlegues lead to the formulation of a rudimentary object identification system.

The second year of this grant proposed a continuation that would have involved,

the establishment of a Two-Dimensional Object Identification System (TOIS) in soft-

ware. In this phase, two dimensional figures were to be identified using algorithms that

tolerated internal structures. Following the success of the software implementation

of the TOIS, the third year goal was to produce a microprocessor based equivalent.
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Chapter 2

PROBLEM STUDY PHASE

The problem study phase of this research lasted approxima.tely from April 1, 1988

until August 14, 1988. During this time, the research group narrowed down some

basic definitions concerning how objects were identifiable. In these discussions, it was

concluded that objects could only be identified if they could could be distinguished

from the environmental background. The very act of discernment lead to the premise

that in identifying any object, a comparison is done on the object with respect to the

environment. It was concluded that the base action in all scientific activities involved

a comparison. Inherent in all situations where comparisons are made, there must be

(1) an observer, (2) an observable, (3) a reference, and (4) an agent (Figure 2.1) [1,

pp.47-48]. The observable is compared with a reference object. Both reference and

observable have a characteristic in common and of interest. The agent is a carrier of

information concerning the characteristic present in the observable, relative to some

reference object. The information carried by the agent is relayed to the observer. The

observer is an entity capable of assimilating the relayed information.

In comparing two items, one may look either for similarities or differences depend-

ing upon pre-determined characteristics of interest. In the project performed by the

University, the characteristic of interest is shape. In determining a characteristic of

interest, one must first start with its basic definition.

The definition of shape is nebulous at best. One popular dictionary defines shape

as a mode of existence or a form of being having identifying features [2]. While this

may be a fine definition for human consumption, it does not avail in terms of forming

a numerical algorithm for comparing shapes. This lack of a concrete definition of

shape, lead the research group to seek a mathematical of shape. The formulation of

a mathematical statement of shape marked the end of the problem study phase and

the beginning of the shape metric phase.

2.1 Initial Shape Metric Formulation

In seeking a mathematical solution to shape determination, the research group inves-

tigated the properties of a general surface. Given a general surface, the unit normal

2
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Figure 2.1: Idealized Measuring Relationship.



at every point to this surface is assumed to be a feature of shape. If the gradient

to a curve is known at all points along the curve, then a curve of similar shape can

be constructed from the set of gradients [3, pp. 650-658]. The constructed curve

may be a translate, rotate, enlargement or reduction of the original curve, but it

will have the same shape content. During discussions, the group decided to use the

unit normal to the surface at a set of points in comparing shapes, since it appears to

capture the shape of the surface of interest. In addition to capturing shape, there is a

wealth of literature concerning the use of gradients in determining the direction of the

surface. The next step was to develop a numerical method for comparing functions

in two-space (Refer to Appendix A.) This step was successful and it resulted in a

uni-dimensional metric that allowed the comparison of functions in two-space. The

draw-back of this metric is that it does not allow for the presence of internal structure.

Through successive application of this metric, at best the outline of a two dimensional

object may be compared. Some applications of the uni-dimensional metric is shown

in Appendix B.

The next step of research involved devising a method that would overcome, the

mandatory successive application of the uni-dimensional metric. This search lead to

the development of the polar shape metric (Refer to Appendix C.) The polar shape

metric allowed the comparison of closed curves in two-space. The comparison was

performed by:

• centering both objects at the origin,

• constructing gradients to the curves at the points intersected by rays from the

origin at differing angle between 0 and 2_',

• on a point-by-point basis, carrying out a comparison analogous to the compar-

ison used in the uni-directional curve shape metric.

Here the curves are assumed to be relatively smooth with a finite number of discon-

tinuities (places where the gradient is undefined.)

The research group presented the initial ideas concerning object determination

via shape to the scientific community at student and professional levels.

2.2 Shape Identification Group Events

During the first phase, the research group participated in the following presentations

or events:

1. Lebby, G. L., '_Recognition of Plane Figures Using a Gradient-Based Shape

Metric, " Engineering System and Technology Division Symposium, Minnesota

Mining and Manufacturing, September, 1988.
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2. Lebby, G. L., Matherson, J.M., and E. E. Sherrod, "Two Dimensional Object

Detection Technique Using a Gradient Based Metric," Abstract, 1989 IEEE

Symposium on System Theory.

3. Matherson, J.M., Sherrod, E.E., and G.L. Lebby, "Two-Dimensional Object

Identification Using a Gradient Based Metric Technique," Presentation, NASA-

Langley 1988 HBCU Workshop.

Refer to Appendix D for a sample of overhead transparencies used in the presenta-
tions.

z
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Chapter 3

Formulation of the TOIS

In defining the Two-Dimensional Object Identification System (TOIS) the following

system types are used:

• Image_Palette - an area used for storing the descriptions of multiple objects in

a scene.

• Object_Descriptor_Vector - a set of descriptions pertaining to objects identified

in an Image_Pallete.

Refer to Figure 3.1. The TOIS receives input via an Image_Pallete that describes

the two dimensional scene of interest. If the Image_Pallete is empty, then the system

resets and awaits another set of input. If the Image_Pallete is not empty, then the

system recursively performs the following modular activities:

1. Locate_Object

2. Identify_Object

3. Generate_Descriptor

The effect of the TOIS is to locate and identify all objects in a specified image palette.

3.1 Description of the Locate_Object Module

The purpose of the Locate_Object module is to locate the next object in the specified

Image_Palette (Figure 3.2). Initially, the Locate_Object module is set to Object_Zero.

Object_Zero is a special object that lets Locate_Object know that there are no objects

located in the current Image_Palette. Locate_Object will perform the following for a

non-empty Image_Palette:

1. Extract_Next_Object

2. Remove_Object
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TOIS:

Y

VIEW: Image_Palette

c( EXCEPTIONS _

V

LOCATE_OBJECT

IDENTIFY_OBJECT

V

GENERATE_DESCRIPTOR

Eflect Is to locate and Identity all objects

objects In the Image palette, VIEW.

W

:RETURN

object_descriptor_vector

Figure 3.1: Two-Dimensional Object Identification System.
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LOCATE_OBJECT:

V

VIEW: Image_Palette

i

Exception on Null_Palette

:RETURN

Image_Descriptor

Extract_Next_Object

Remove_Object

Effect is to locate the next object

in the palette, VIEW and move it to an

image descriptor (TARGET).

Figure 3.2: Locate_Object Module.
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IDENTIFY_OBJECT:

V

TARGET: Image Descriptor

OBJECT_LIB: STD_lmage_Lib

(( NO EXCEPTIONS _

V

INIT_POINTERS

RETURN:
Image_Report

Y

GET_STD_OBJECT

COMPARE_WITH_TARGET

tn Shllpe.Range 7

__- False

_r" _r '
LOG_STD_OBJECT F NIL

Effect is to identify a group of standard

objects that are shaped like the target
object.

Figure 3.3: Identify_Object Module.

The Extract_Next_Object module moves the system's attention to the next object in

the Image_Palette. The critical image description and location are recorded in the

current Image_Descriptor.

The Remove_Object module operates on the current Image_Palette to mask or

delete the current object. The current object is marked as viewed, so that it will not

be reselected for identification. The overall effect of the Remove_Object module is to

delete the current object.

3.2 Description of the Identify_Object Module

The purpose of the Identify_Object module is to compare the current object descrip-

tion pointed to in the Image_Descriptor to objects described in a library of standard-

ized images (Figure 3.3) The following additional types are used in the definition of

the Identify_Object module:

• STD_Image_Lib - this is a library of standardized images used to identify the

unknown target image.

• Image.Report - this is a report of the comparisons made between the unknown

target and each of the known reference objects from the standard library.
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GEN_DESCRIPTION

V

SEARCH__RESULT:Image_Report

<( NO EXCEPTIONS >>

NEURAL_INFERENCE_MACHINE

Effect is to use an embedded neural
network to generate inference from
the search results concerning the
identity of the target,

:RETURN

Figure 3.4: Gen_Description Module.

The Identlfy_Object module takes as input, the Image_Descriptor and the STD_Image_Lib.

The module INIT_POINTERS, initializes appropriate data pointers so that the cur-

rent unknown target is referenced throughout the identification and is compared with

the k-th image in the standard library where k varies from the first to the last stan-

dard image. The Get.STD_Object module fetches the k-th standard object from the

library. The Compare_With_Target module does a shapewise comparision of the un-

known target with the k-th standard object. If the comparision of the two objects are

within an acceptable range (Shape_Range) then control is passed to a module called

Log_STD_Object. The module Log_STD_Object is responsible for creating entries in

the Image_Report concerning possible library matches.

The overall effect of the Identify_Object module is to identify a subset of objects

from the library of standardized objects that are similar in shape to the unknown

target object. The information concerning the comparision is recorded in the Im-

age_Report.

v

3.3 Description of the Gen_Description Module

The purpose of the Gen_Description module is to generate a description of the un-

known target object in terms of pre-defined standard objects (Figure 3.4.) The core
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of this module is a neural inferencemachinethat iterprets the Image_Reportsand
makesinferencesconcerningthe identity of the target object based upon shape. The

information returned by this module is an indexed description of the target object

in terms of probable matches with a subset of standard objects. The neural in-

ference machine development and training is part of the goals for the second year

of this project. The effect of the Gen_Description module is to generate an Ob-

ject_Description_Vector entry concerning the target object's identity. The identity is

inferred from the Image_t_eport.



Chapter 4

Summary

For the first year, a gradient basedmethod for comparing curves in two-spacehas
beendevelopedand refined. The researchgroup haspresentedthe conceptsbehind
the gradient shapemetric to the scientificcommunity. A systemfor two-dimensional
object identification (TOIS) hasalso beenproposedand discussed.The completion
of theseitems mark the endof PhaseI.

PhaseII entails establishingthe TOIS in software. In this phase,the identifying
algorithmswill beableto handletwo dimensionalobject of increasedcomplexity. The
goalof PhaseII will be the completeidentification of objects in a scene.

PhaseIII involves the production of a microprocessorbased equivalent of the
TOIS. The goal of this phase will be to recognizeobjects in real time. Human
recognitionof a scenewill be employedasa measureof the hardware basedTOIS.

12



Appendix A

Shape Metric Development

A.1 FUNCTION COMPARISON IN TWO-SPACE

Assume that there exist two functions in two-space, called y(t) and x(t) (Figure A.1.)
Further assume that there exist corresponding sets of gradients to the functions x(t)

and y(t) called C_ and Cy respectively. There is a real function that is defined for

all curves C_ and Cy that are elements of the set • and it satisfies the following

properties [4]:

1..£(C_,Cv) = .£(Cv, C_ ) (symmetry)

2. £(C_, Cv) > 0 (nonnegativity)

3. £(C_, Cv) = 0 iff C_ and Cv are equal (nondegeneracy condition).

4. < c,)+
for all elements C_, Cy, and Cz that belong to the set _ (triangle inequality).

If the above is true, then elements of q are called points in the metric space (_,£)

with £ being a metric or distance function defined over q.

At this point, measuring has been covered in general, also the definition of a metric

has been established. The topic of curve measuring will be motivated in the following

sub-section. In this section, the observable and the standard reference have been

restricted to being continuous functions in two-space. This accommodates studying

daily PSL curves, since the horizontal axis represents the hours of the day and the

vertical axis represents the magnitude of the PSL in units of power (in this case the

units of power are megawatts).

Further assume that we are interested in comparing the two curves x(t) and y(t)

over a closed interval [a,b] where y(t) and x(t) are continuous and have a finite

gradient defined over the closed interval [a,b]. In principle, the two curves must be

compared at each point in time t. Intuitively, the comparison must ignore translations

in the vertical direction, however, translations in the horizontal directions will not be

accommodated for. This can also be easily thought of as comparing like points in

13



j 14

12

10

8

6

4

; t
!

O! l 1 '1 i 1 f

0 2 4- 6 8 10 12

Figure A.I: Gradient Comparison of Two Curves at a Point.
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time, since horizontal shifts will cause shifts in time. Vertical shifts cause shifts in

magnitude and this does not cause the problems that a horizontal shift would. The

central assumption concerns the equality of shape over a closed interval. Two curves

z(t) and y(t) will be considered equally shaped over the closed interval [a,b] if and

only if (iff) the gradients constructed at the point to to x(t0) and y(t0) are equal

for all points t0e[a,b]. From this assumption, it can be gathered that the curves are

either equal or they are not equal over a specified closed interval. Yet, there exist

a desire to express not only the equality of the two curves x(t) and y(t), but to

express a measure of similarity or dissimilarity in the case that the two curves are not

equal. Gradient similarity is represented by use of the absolute value of the scalar

inner product between the gradient vectors at a point to. Similarly, the gradient

dissimilarity is represented by using the magnitude of the vector product between

the two gradient vectors at a point t0. Referring to Figure A.1, assume that each

constructed gradient is normalized. Normalization assures that the absolute value

of the scaler inner product or the magnitude of the vector product between any two

vectors lie between zero and one. Normalizing the gradient vectors on each of the

curves at each point in time serves to weight each comparison between x(t) and y(t).

This comparison can be one similarity or dissimilarity. When dealing with similarity,

assume that a gradient _z(t) is compared to another gradient _Ty(t) by performing

the scaler inner product _Tx(t). _7y(t). Since the gradients involved are normalized, in

the case that Vz(t) equals _7y(t), the scaler inner product will result in a value of one.

The direction in which the gradient points (the gradient is a vector quantity, having

both direction and magnitude) is sometimes termed the direction of the surface. In
this case the surfaces involved are the curves themselves. The absolute value of scaler

inner product between two vectors in general takes on values between zero and one

inclusive. If the vectors point in the same direction, the inner product will be one. If

they are perpendicular, the inner product will be zero. Form a number _'(t0), such
that

A'(t0) =Z _'x(t0). Vy(t0) J

for each point toe[a, b]. This lays the basis for a transformation that is in a sense

a reversed measure since it increases with the similarity of the functions x(t) and

y(t). If x(t) has the same shape as y(t) then _*(t) would always be at it's maximum

value of 1. Summing A*(t) for all t would yield an average value of 1. If the sum of

_'(t) was a distance function then it should be zero when x(t) equals y(t) and not

one. Since it is desirable to obtain not only an index of closeness, but a bonafide

measure, the alternate transformation called "dissimilarity" will be used. Intuitively,

dissimilarity will tend to zero as the curves x(t) and y(t) tend to each other. In using

dissimilarity as a candidate measure, the arguments and assumptions made regarding

the gradient normals are retained. When dealing with dissimilarity, assume that

a gradient _x(t) is compared to another gradient _Ty(t) by performing the vector

product _x(t) × Vy(t). The magnitude of the vector product between two unit

normal vectors takes on values between zero and one inclusive. If the vectors point
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in the samedirection, the result will be zero. If they are perpendicular, the vector
product will be one. Form a number./:(tO),such that

 (t0) =l fTx(t)× fTu(t)I, (A.1)

for each point toe[a, b]. Next, sum all the numbers ,_(t0), for each to in the closed

interval [a,b] and then take the average of this sum. Call this resultant value £

9(t))is

£(J:(t),fl(t)) = J ),(t)dt (A.2)

11

where the interval [a,b] is assumed to have a non-zero length and b is greater than a.

This value £(x,y) is hereafter referred to as the distance between the shape of x(t)

and the shape of y(t) over the closed interval [a,b]. This operation £ is claimed to be

a metric for the characteristic "closeness of shape" in shape space. The next section

will fully define this newly mentioned metric space, "shape space" and proceed with

proofs that £ is a metric that will measure distance in that space.

A.2 DISTANCE IN SHAPE SPACE

It is claimed that shape like any other characteristic that is observable can be mea-

sured and given a unique number which determines a relationship between one object

with respect to another. A major concern is with comparing modeled PSL curves with

that of the actual PSL curve. These curves are in two-space, so the proof will deal

with curves in two-space, although the proof could be extended to include n-space,

where n > 2 and n is an integer. Further assume that we are interested in obtain-

ing the average difference in shape between two curves x(t) and y(t) over a non-zero

length interval of time where a < t < b. In addition assume that the derivatives

_(t) and #(t) exist with at most finite discontinuities over the interval [a,b]. The unit

normals to the curves z(t) and y(t) are respectively defined as follows:

_x(t)- (-k(t),l), (A.3)

_1 71-&(t) 2

_ry(t) = (-_(t), 1) (A.4)

V/1 + _(t) 2"

From the unit normal, two metric candidates are formed. One candidate is curve

similarity, the other is called curve dissimilarity. The candidate known as curve

dissimilarity closest represents the intuitive meaning of distance, since distance is a

measure of difference, rather than similarity. It can be shown that when operating

with unit vectors, the cosine of the angle between the two vectors is the scalar inner

product and the sine of the angle between the two vectors in absolute value is the
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magnitude of the vector product. Knowing this, there arises a relation between the

similarity at a point in time and the dissimilarity at that same point in time :

(dissimilarity) 2 = (1 - (similarity)2). (A.5)

Using the new definition for dissimilarity, let a new function be defined as

_(i,_) = I'e'x(t) × _'y(t)I. (A.6)

For the remainder of this proof, the time index will be dropped, but it is understood

that x=x(t) and that y=y(t). After making the substitutions referred to in equations

(4.6) and (4.7) and a few algebraic manipulations, the expression for _' simplifies to

the following form:

I :/:- _) [ (A.7)



Appendix B

SHAPE METRIC APPLICATIONS

As with any new convenience,the Curve ShapeMetric (CSM) is only as good as it
is usable. To use the CSM with any confidence,one must havean idea of what the
numberscoming out of the evaluation of the CSM mean. One way to calibrate the
valuesthat are returned by the CSM function is to start with a group of functions.
This group of functions must containfunctions that appearsimilar in shapeto some
functions in the group and different in shapeto others. Visually one can tell which
functions are similar in shapeand which functions are dissimilar in shape. When
the CSM is applied to the functions in all possiblecombinations, the CSM can be

intuitively gauged. A threshold of similarity can be found heuristically, whereby when

the CSM returns a value less than the threshold value, most people would say that

the curves would be the same, and above this level, the curves would tend to appear

dissimilar.

Assume that there exist five continuous functions on the closed interval [0,1]. Also,

let these functions have continuous first derivatives for each value of t in the closed

interval. Further, let these functions be defined as:

f,(t) = 1/(1 + t_),

f:(t) =  xp(-t2),
f (t) = 1- t2,

f (t) =
h(t) = 1-t.

(B.1)

(B.2)
(B.3)
(B.4)

(B.5)

In this example, fl(t) has been chosen to be similar in shape to f2(t) and f3(t) has been

chosen to be similar in shape to f4(t), while fs(t) is chosen not to resemble either of the

other four functions (refer to Figure B.1.) Refer to Table 1 for the shape correlation

matrix concerning the system of five continuous functions. Assume that the system of

five functions represent some repetitive process over a finite time period (preferably

some integral multiple of the fundamental frequency of the process). Further assume

that each of the five functions are the outputs of the process. If the process is

18
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_Ft ....... F2 ..... F3 _--Fq .... F5

Figure B.I: Five Continuous Functions for Comparison.

Table B.I: Relative Shape Distance Among Five Functions.

FI F2 F3 F4 F5

FI 0.00000

F2 0.08905 0.00000

F3 0.24141 0.15778 0.00000

F4 0.26336 0.17893 0.04988 0.00000

F5 0.32004 0.23242 0.25695 0.22316 0.00000
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Figure B.2: Output Structure for Five Continuous Functions.

truly repetitive, whenever the shape is taken over a finite time period that has been

properly chosen, the relative shapes among all the outputs fl,..., f5 will tend to be

constants. It is quickly noticed that the function fs(t) is most distant from the rest

of the functions in the system and tend to cause the output structure to take on the

shape of a pyramid. The other functions tend to group as expected, along with the

two separate pairs of functions being close together. Noti_:e in Figure B.1, that all

the functions are concave down on the interval [0,1] except fs(t), which causes the

four to be closer together in shape space. Since the CSM is a pairwise comparison

of objects, it can be mapped back into three dimensions. Thus the distances among

all the outputs of the system of interest in shape space will define a construct that

can be represented as a real structure in three space called the output structure of the

system (refer to Figure B.2.) The output structure for the system of five functions

adds the convenience of being able to visualize systems in shape space as a rigid

structure rather than concentrating solely on a table of numbers. The CSM analysis

works well on systems that are somewhat stow to change (i.e. PSL may change from

hour to hour and day to day, yet when observed over a period of years, it reveals

a slowly changing overall process) and is repetitive. A natural use of CSM analysis

is to start with a PSL process that does not have a desirable shape (this may be

because of an unwanted valley in one or more outputs that occurs periodically at a
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certaintime) and to observethe effectof a loadmanagementpolicy as it impactsupon
the output structure with respectto a pre-formulateddesiredoutput structure. The
changein the output structure is a measurablequantity and it canbe determinedif a
policy causedstatistically significantchangesin the output with respectto a standard
reference.

CSM analysiscan alsobe usedto gaugethe effectivenessof a model. The possi-

bilities of using shape analysis are boundless. Past data may be compared to future

data to detect changes in the load output structure, future data may be used to check

the goodness of shape of a model based upon past data.



Appendix C

Polar Metric Development

C.1 CLOSED CURVES IN _2

In the previous sections,the shapemetric was confined to discussingfunctions in
_. This approachhas limited usewhen comparingobjects with varying degreesof
complexity. This complexity couldbe in the form-of angular rotations, enlargements,
or translations, which could makeobjects similar in shapedistinctly different due to
its relative orientation. Weenter a restriction on our shapemetric that will limit its
current application to object outlines. Objects which possessinternal structureswill
not beconsidered.Assumethereexiststwo objectsin two-spacethat canbe translated
suchthat there centroidsarecenteredabout the origin (Figure C.1.) Further assume
that the objects can be describedby continuousmathematical relations C1 and C2

which may be represented as follows:

c, = (_l(O),O) v o e [0,2_1 (c.1)

, c_ = (_(0),0) v 0 e [0,2_1 (c.2)
For all angles O, let the unit normals to C1 and C2 be represented by _7C1(0) and

VC2(0). In cartesian coordinates, the unit normals are determined to be as follows:

dr' sin0+rlcos0. _sin0+rlCOS0
VC, = dO z + dO j (C.3)

./(.4rJ._2_/(9)_ + r_ v, do, + d

._z sin 0 + r2 cos 0. --_ cos 0 + r2 sin 0
¢C2 = do _+ d0 j (¢.4)

A metric similar to the one developed for functions in _2 can be developed for closed

curve as well. The proposed metric, is as follows:

1 fo2_"II_'C,x '¢'c_11dO (C.5)£c,c_ = 2--_

The proposed metric also assumes that all target objects are to be compared to entries

belonging to a standard library of objects that are already centered at the origin. All

22
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Figure C.I: Two CenteredObjects in Two-Space.

w .
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comparisons will be performed by examining the normal to the curve for the following
values of 0:

27r >0> 0.

One problem that may arise is 6'1 and C2 are similarly shaped, but one is a rotate of

the other. In a case such as this, the shape metric will give a dissimilar reading for two

objects that are in fact similar rotated. To minimize errors due to rotated objects,

the curve shape metric must be considered over all possible z-axis rotations as follows:

1 f0 _'_•tc, c= = _ II_'C,(O) x _'C=(O + o,)l I dO V,_ 6 [O,2:,r) (C.6)

Assuming that the two objects may be rotates of each other, the shape metric must

minimized over a. When the shape metric has been minimized, the angle found to

be the minimum, at ami,,, represents the angle at which object two must be rotated

to most closely resemble the other object.

V

C.2 Conclusions

We have presented a method of identifying two-dimensional objects. The method

is based upon the unit gradient of an observed plane figure and the unit of a stan-

dard reference figure over a specified range of points. Functions in two-space are

decomposed into functions of a single variable. These functions are then compared

with a library of functions. The curve shape metric yields a value between zero and

one inclusive. These values represent similarity and dissimilarity respectively. A zero

would imply a perfect match according to shape and a one would indicate that the two

shapes are distinctly different. This curve shape metric also requires that objects be

decomposed into function's of a single variable before they can be tested for similarity

or dissimilarity. Objects under study have been limited to having no internal struc-

tures. Instead of decomposing the objects, the curve shape metric was transformed

into a polar metric whereby, the decomposition of objects was handled by this trans-

formation. With this method objects are translated so that its centroid is mapped to

the origin. The object is compared with a standard reference by comparing the unit

normals to the curves at every angle 0. The resultant is a curve index

1 2,r

.Co,c, = II 'C, ×  TC lldo (c.7)

The object is translated to consider all possible z-axis rotations which lead to the

following formula:

1 fo 2'_,c,c = II C,(O)× 9c (o + a)ll dO Vo,e (C.S)

When, the minimum of the function $(C1, C2) is obtained, then a decision must be

made to determine if the overall minimum is small enough to consider the target iden-

tifiable as a member of the standard library. Our current research involves evaluating
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the feasibility of implementing this algorithm usingdistributed processingalgorithms
which possessesa parallel architecture. Methods arealsobeing consideredto handle
two- dimensionalobjectswith internal substructures.



t

Appendix D

Presentation Transparencies

The following transparencies are from presentations given by Dr. Lebby and Mr.

Matherson.
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• Background Information

• Motivation of Shape Metric

• Illustrative Examples

• Potential Applications

• Concluding Remarks
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Concluding Remarks
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Potential Applications

0 Obiecf Classification

o Surface Distortion Measurement

• Neural Network Feature Extractor
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ITEMS FOR DISCUSSION

• BACKGROUND INFORMATION

• DERIVATION OF SHAPE METRIC

• SHAPE METRIC .EXAMPLES

• POTENTIAL APPLICATIONS

• CONTINUING RESEARCH

• CONCLUDING REMARKS



BACKGROUND INFORMATION

• PURPOSE -- To investigate techniques

for identifying two-dimensional
objects.

• SCOPE - Confined to simple convex

geometrical shapes.

• METHOD - Shape identification using

shape metric.
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POTENTIAL APPLICATIONS

• OBJECT CLASSIFICATION

• SURFACE DISTORTION

• NEURAL NETWORK FEATURE EXTRACTION
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CONTINUING RESEARCH

• EXAMINATION OF MORE COMPLEX OBJECTS

• MODEL MORE THAN SIMPLE ROTATIONS AND
INVERSIONS

• METHODS TO EXAMINE INTERNAL DETAILS
OF COMPLEX OBJECTS
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